Uniform Inference in High-Dimensional Threshold Regression Models
Jiatong Li and
Hongqiang Yan
Papers from arXiv.org
Abstract:
We develop uniform inference for high-dimensional threshold regression parameters, allowing for either cross-sectional or time series data. We first establish Oracle inequalities for prediction errors and $\ell_1$ estimation errors for the Lasso estimator of the slope parameters and the threshold parameter, accommodating heteroskedastic non-subgaussian error terms and non-subgaussian covariates. Next, we derive the asymptotic distribution of tests involving an increasing number of slope parameters by debiasing (or desparsifying) the Lasso estimator in cases with no threshold effect and with a fixed threshold effect. We show that the asymptotic distributions in both cases are the same, allowing us to perform uniform inference without specifying whether the true model is a linear or threshold regression. Finally, we demonstrate the consistent performance of our estimator in both cases through simulation studies, and we apply the proposed estimator to analyze two empirical applications.
Date: 2024-04, Revised 2024-08
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2404.08105 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2404.08105
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().