Long run consequence of p-hacking
Xuanye Wang
Papers from arXiv.org
Abstract:
We study the theoretical consequence of p-hacking on the accumulation of knowledge under the framework of mis-specified Bayesian learning. A sequence of researchers, in turn, choose projects that generate noisy information in a field. In choosing projects, researchers need to carefully balance as projects generates big information are less likely to succeed. In doing the project, a researcher p-hacks at intensity $\varepsilon$ so that the success probability of a chosen project increases (unduly) by a constant $\varepsilon$. In interpreting previous results, researcher behaves as if there is no p-hacking because the intensity $\varepsilon$ is unknown and presumably small. We show that over-incentivizing information provision leads to the failure of learning as long as $\varepsilon\neq 0$. If the incentives of information provision is properly provided, learning is correct almost surely as long as $\varepsilon$ is small.
Date: 2024-04
New Economics Papers: this item is included in nep-ppm and nep-sog
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2404.08984 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2404.08984
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().