Quantum Risk Analysis of Financial Derivatives
Nikitas Stamatopoulos,
B. David Clader,
Stefan Woerner and
William J. Zeng
Papers from arXiv.org
Abstract:
We introduce two quantum algorithms to compute the Value at Risk (VaR) and Conditional Value at Risk (CVaR) of financial derivatives using quantum computers: the first by applying existing ideas from quantum risk analysis to derivative pricing, and the second based on a novel approach using Quantum Signal Processing (QSP). Previous work in the literature has shown that quantum advantage is possible in the context of individual derivative pricing and that advantage can be leveraged in a straightforward manner in the estimation of the VaR and CVaR. The algorithms we introduce in this work aim to provide an additional advantage by encoding the derivative price over multiple market scenarios in superposition and computing the desired values by applying appropriate transformations to the quantum system. We perform complexity and error analysis of both algorithms, and show that while the two algorithms have the same asymptotic scaling the QSP-based approach requires significantly fewer quantum resources for the same target accuracy. Additionally, by numerically simulating both quantum and classical VaR algorithms, we demonstrate that the quantum algorithm can extract additional advantage from a quantum computer compared to individual derivative pricing. Specifically, we show that under certain conditions VaR estimation can lower the latest published estimates of the logical clock rate required for quantum advantage in derivative pricing by up to $\sim 30$x. In light of these results, we are encouraged that our formulation of derivative pricing in the QSP framework may be further leveraged for quantum advantage in other relevant financial applications, and that quantum computers could be harnessed more efficiently by considering problems in the financial sector at a higher level.
Date: 2024-04
New Economics Papers: this item is included in nep-rmg
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2404.10088 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2404.10088
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().