EconPapers    
Economics at your fingertips  
 

Artificial Intelligence for Multi-Unit Auction design

Peyman Khezr and Kendall Taylor

Papers from arXiv.org

Abstract: Understanding bidding behavior in multi-unit auctions remains an ongoing challenge for researchers. Despite their widespread use, theoretical insights into the bidding behavior, revenue ranking, and efficiency of commonly used multi-unit auctions are limited. This paper utilizes artificial intelligence, specifically reinforcement learning, as a model free learning approach to simulate bidding in three prominent multi-unit auctions employed in practice. We introduce six algorithms that are suitable for learning and bidding in multi-unit auctions and compare them using an illustrative example. This paper underscores the significance of using artificial intelligence in auction design, particularly in enhancing the design of multi-unit auctions.

Date: 2024-04, Revised 2024-08
New Economics Papers: this item is included in nep-ain and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2404.15633 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2404.15633

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2404.15633