Artificial Intelligence for Multi-Unit Auction design
Peyman Khezr and
Kendall Taylor
Papers from arXiv.org
Abstract:
Understanding bidding behavior in multi-unit auctions remains an ongoing challenge for researchers. Despite their widespread use, theoretical insights into the bidding behavior, revenue ranking, and efficiency of commonly used multi-unit auctions are limited. This paper utilizes artificial intelligence, specifically reinforcement learning, as a model free learning approach to simulate bidding in three prominent multi-unit auctions employed in practice. We introduce six algorithms that are suitable for learning and bidding in multi-unit auctions and compare them using an illustrative example. This paper underscores the significance of using artificial intelligence in auction design, particularly in enhancing the design of multi-unit auctions.
Date: 2024-04, Revised 2024-08
New Economics Papers: this item is included in nep-ain and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2404.15633 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2404.15633
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().