The Effect of Data Types' on the Performance of Machine Learning Algorithms for Financial Prediction
Hulusi Mehmet Tanrikulu and
Hakan Pabuccu
Papers from arXiv.org
Abstract:
Forecasting cryptocurrencies as a financial issue is crucial as it provides investors with possible financial benefits. A small improvement in forecasting performance can lead to increased profitability; therefore, obtaining a realistic forecast is very important for investors. Successful forecasting provides traders with effective buy-or-hold strategies, allowing them to make more profits. The most important thing in this process is to produce accurate forecasts suitable for real-life applications. Bitcoin, frequently mentioned recently due to its volatility and chaotic behavior, has begun to pay great attention and has become an investment tool, especially during and after the COVID-19 pandemic. This study provided a comprehensive methodology, including constructing continuous and trend data using one and seven years periods of data as inputs and applying machine learning (ML) algorithms to forecast Bitcoin price movement. A binarization procedure was applied using continuous data to construct the trend data representing each input feature trend. Following the related literature, the input features are determined as technical indicators, google trends, and the number of tweets. Random forest (RF), K-Nearest neighbor (KNN), Extreme Gradient Boosting (XGBoost-XGB), Support vector machine (SVM) Naive Bayes (NB), Artificial Neural Networks (ANN), and Long-Short-Term Memory (LSTM) networks were applied on the selected features for prediction purposes. This work investigates two main research questions: i. How does the sample size affect the prediction performance of ML algorithms? ii. How does the data type affect the prediction performance of ML algorithms? Accuracy and area under the ROC curve (AUC) values were used to compare the model performance. A t-test was performed to test the statistical significance of the prediction results.
Date: 2024-04
New Economics Papers: this item is included in nep-big, nep-cmp, nep-fmk and nep-pay
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2404.19324 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2404.19324
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().