EconPapers    
Economics at your fingertips  
 

Unveiling Nonlinear Dynamics in Catastrophe Bond Pricing: A Machine Learning Perspective

Xiaowei Chen, Hong Li, Yufan Lu and Rui Zhou

Papers from arXiv.org

Abstract: This paper explores the implications of using machine learning models in the pricing of catastrophe (CAT) bonds. By integrating advanced machine learning techniques, our approach uncovers nonlinear relationships and complex interactions between key risk factors and CAT bond spreads -- dynamics that are often overlooked by traditional linear regression models. Using primary market CAT bond transaction records between January 1999 and March 2021, our findings demonstrate that machine learning models not only enhance the accuracy of CAT bond pricing but also provide a deeper understanding of how various risk factors interact and influence bond prices in a nonlinear way. These findings suggest that investors and issuers can benefit from incorporating machine learning to better capture the intricate interplay between risk factors when pricing CAT bonds. The results also highlight the potential for machine learning models to refine our understanding of asset pricing in markets characterized by complex risk structures.

Date: 2024-04, Revised 2024-08
New Economics Papers: this item is included in nep-big, nep-cmp, nep-fmk and nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2405.00697 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2405.00697

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2405.00697