EconPapers    
Economics at your fingertips  
 

Predictive Decision Synthesis for Portfolios: Betting on Better Models

Emily Tallman and Mike West

Papers from arXiv.org

Abstract: We discuss and develop Bayesian dynamic modelling and predictive decision synthesis for portfolio analysis. The context involves model uncertainty with a set of candidate models for financial time series with main foci in sequential learning, forecasting, and recursive decisions for portfolio reinvestments. The foundational perspective of Bayesian predictive decision synthesis (BPDS) defines novel, operational analysis and resulting predictive and decision outcomes. A detailed case study of BPDS in financial forecasting of international exchange rate time series and portfolio rebalancing, with resulting BPDS-based decision outcomes compared to traditional Bayesian analysis, exemplifies and highlights the practical advances achievable under the expanded, subjective Bayesian approach that BPDS defines.

Date: 2024-04
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2405.01598 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2405.01598

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2405.01598