Tuning parameter selection in econometrics
Denis Chetverikov
Papers from arXiv.org
Abstract:
I review some of the main methods for selecting tuning parameters in nonparametric and $\ell_1$-penalized estimation. For the nonparametric estimation, I consider the methods of Mallows, Stein, Lepski, cross-validation, penalization, and aggregation in the context of series estimation. For the $\ell_1$-penalized estimation, I consider the methods based on the theory of self-normalized moderate deviations, bootstrap, Stein's unbiased risk estimation, and cross-validation in the context of Lasso estimation. I explain the intuition behind each of the methods and discuss their comparative advantages. I also give some extensions.
Date: 2024-05
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2405.03021 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2405.03021
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().