EconPapers    
Economics at your fingertips  
 

Tuning parameter selection in econometrics

Denis Chetverikov

Papers from arXiv.org

Abstract: I review some of the main methods for selecting tuning parameters in nonparametric and $\ell_1$-penalized estimation. For the nonparametric estimation, I consider the methods of Mallows, Stein, Lepski, cross-validation, penalization, and aggregation in the context of series estimation. For the $\ell_1$-penalized estimation, I consider the methods based on the theory of self-normalized moderate deviations, bootstrap, Stein's unbiased risk estimation, and cross-validation in the context of Lasso estimation. I explain the intuition behind each of the methods and discuss their comparative advantages. I also give some extensions.

Date: 2024-05
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2405.03021 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2405.03021

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2405.03021