A weighted multilevel Monte Carlo method
Yu Li and
Antony Ware
Papers from arXiv.org
Abstract:
The Multilevel Monte Carlo (MLMC) method has been applied successfully in a wide range of settings since its first introduction by Giles (2008). When using only two levels, the method can be viewed as a kind of control-variate approach to reduce variance, as earlier proposed by Kebaier (2005). We introduce a generalization of the MLMC formulation by extending this control variate approach to any number of levels and deriving a recursive formula for computing the weights associated with the control variates and the optimal numbers of samples at the various levels. We also show how the generalisation can also be applied to the \emph{multi-index} MLMC method of Haji-Ali, Nobile, Tempone (2015), at the cost of solving a $(2^d-1)$-dimensional minimisation problem at each node when $d$ index dimensions are used. The comparative performance of the weighted MLMC method is illustrated in a range of numerical settings. While the addition of weights does not change the \emph{asymptotic} complexity of the method, the results show that significant efficiency improvements over the standard MLMC formulation are possible, particularly when the coarse level approximations are poorly correlated.
Date: 2024-05
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2405.03453 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2405.03453
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).