EconPapers    
Economics at your fingertips  
 

Hedging American Put Options with Deep Reinforcement Learning

Reilly Pickard, Finn Wredenhagen, Julio DeJesus, Mario Schlener and Yuri Lawryshyn

Papers from arXiv.org

Abstract: This article leverages deep reinforcement learning (DRL) to hedge American put options, utilizing the deep deterministic policy gradient (DDPG) method. The agents are first trained and tested with Geometric Brownian Motion (GBM) asset paths and demonstrate superior performance over traditional strategies like the Black-Scholes (BS) Delta, particularly in the presence of transaction costs. To assess the real-world applicability of DRL hedging, a second round of experiments uses a market calibrated stochastic volatility model to train DRL agents. Specifically, 80 put options across 8 symbols are collected, stochastic volatility model coefficients are calibrated for each symbol, and a DRL agent is trained for each of the 80 options by simulating paths of the respective calibrated model. Not only do DRL agents outperform the BS Delta method when testing is conducted using the same calibrated stochastic volatility model data from training, but DRL agents achieves better results when hedging the true asset path that occurred between the option sale date and the maturity. As such, not only does this study present the first DRL agents tailored for American put option hedging, but results on both simulated and empirical market testing data also suggest the optimality of DRL agents over the BS Delta method in real-world scenarios. Finally, note that this study employs a model-agnostic Chebyshev interpolation method to provide DRL agents with option prices at each time step when a stochastic volatility model is used, thereby providing a general framework for an easy extension to more complex underlying asset processes.

Date: 2024-05
New Economics Papers: this item is included in nep-big, nep-cmp and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2405.06774 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2405.06774

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2405.06774