"Microstructure Modes" -- Disentangling the Joint Dynamics of Prices & Order Flow
Salma Elomari-Kessab,
Guillaume Maitrier,
Julius Bonart and
Jean-Philippe Bouchaud
Papers from arXiv.org
Abstract:
Understanding the micro-dynamics of asset prices in modern electronic order books is crucial for investors and regulators. In this paper, we use an order by order Eurostoxx database spanning over 3 years to analyze the joint dynamics of prices and order flow. In order to alleviate various problems caused by high-frequency noise, we propose a double coarse-graining procedure that allows us to extract meaningful information at the minute time scale. We use Principal Component Analysis to construct "microstructure modes" that describe the most common flow/return patterns and allow one to separate them into bid-ask symmetric and bid-ask anti-symmetric. We define and calibrate a Vector Auto-Regressive (VAR) model that encodes the dynamical evolution of these modes. The parameters of the VAR model are found to be extremely stable in time, and lead to relatively high $R^2$ prediction scores, especially for symmetric liquidity modes. The VAR model becomes marginally unstable as more lags are included, reflecting the long-memory nature of flows and giving some further credence to the possibility of "endogenous liquidity crises". Although very satisfactory on several counts, we show that our VAR framework does not account for the well known square-root law of price impact.
Date: 2024-05
New Economics Papers: this item is included in nep-mst
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2405.10654 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2405.10654
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().