EconPapers    
Economics at your fingertips  
 

Deep Penalty Methods: A Class of Deep Learning Algorithms for Solving High Dimensional Optimal Stopping Problems

Yunfei Peng, Pengyu Wei and Wei Wei

Papers from arXiv.org

Abstract: We propose a deep learning algorithm for high dimensional optimal stopping problems. Our method is inspired by the penalty method for solving free boundary PDEs. Within our approach, the penalized PDE is approximated using the Deep BSDE framework proposed by \cite{weinan2017deep}, which leads us to coin the term "Deep Penalty Method (DPM)" to refer to our algorithm. We show that the error of the DPM can be bounded by the loss function and $O(\frac{1}{\lambda})+O(\lambda h) +O(\sqrt{h})$, where $h$ is the step size in time and $\lambda$ is the penalty parameter. This finding emphasizes the need for careful consideration when selecting the penalization parameter and suggests that the discretization error converges at a rate of order $\frac{1}{2}$. We validate the efficacy of the DPM through numerical tests conducted on a high-dimensional optimal stopping model in the area of American option pricing. The numerical tests confirm both the accuracy and the computational efficiency of our proposed algorithm.

Date: 2024-05
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2405.11392 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2405.11392

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2405.11392