An Asymptotic CVaR Measure of Risk for Markov Chains
Shivam Patel and
Vivek Borkar
Papers from arXiv.org
Abstract:
Risk sensitive decision making finds important applications in current day use cases. Existing risk measures consider a single or finite collection of random variables, which do not account for the asymptotic behaviour of underlying systems. Conditional Value at Risk (CVaR) is the most commonly used risk measure, and has been extensively utilized for modelling rare events in finite horizon scenarios. Naive extension of existing risk criteria to asymptotic regimes faces fundamental challenges, where basic assumptions of existing risk measures fail. We present a complete simulation based approach for sequentially computing Asymptotic CVaR (ACVaR), a risk measure we define on limiting empirical averages of markovian rewards. Large deviations theory, density estimation, and two-time scale stochastic approximation are utilized to define a 'tilted' probability kernel on the underlying state space to facilitate ACVaR simulation. Our algorithm enjoys theoretical guarantees, and we numerically evaluate its performance over a variety of test cases.
Date: 2024-05
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2405.13513 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2405.13513
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().