EconPapers    
Economics at your fingertips  
 

Dynamic Latent-Factor Model with High-Dimensional Asset Characteristics

Adam Baybutt

Papers from arXiv.org

Abstract: We develop novel estimation procedures with supporting econometric theory for a dynamic latent-factor model with high-dimensional asset characteristics, that is, the number of characteristics is on the order of the sample size. Utilizing the Double Selection Lasso estimator, our procedure employs regularization to eliminate characteristics with low signal-to-noise ratios yet maintains asymptotically valid inference for asset pricing tests. The crypto asset class is well-suited for applying this model given the limited number of tradable assets and years of data as well as the rich set of available asset characteristics. The empirical results present out-of-sample pricing abilities and risk-adjusted returns for our novel estimator as compared to benchmark methods. We provide an inference procedure for measuring the risk premium of an observable nontradable factor, and employ this to find that the inflation-mimicking portfolio in the crypto asset class has positive risk compensation.

Date: 2024-05
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2405.15721 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2405.15721

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2405.15721