Identifying Extreme Events in the Stock Market: A Topological Data Analysis
Anish Rai,
Buddha Nath Sharma,
Salam Rabindrajit Luwang,
Md. Nurujjaman and
Sushovan Majhi
Papers from arXiv.org
Abstract:
This paper employs Topological Data Analysis (TDA) to detect extreme events (EEs) in the stock market at a continental level. Previous approaches, which analyzed stock indices separately, could not detect EEs for multiple time series in one go. TDA provides a robust framework for such analysis and identifies the EEs during the crashes for different indices. The TDA analysis shows that $L^1$, $L^2$ norms and Wasserstein distance ($W_D$) of the world leading indices rise abruptly during the crashes, surpassing a threshold of $\mu+4*\sigma$ where $\mu$ and $\sigma$ are the mean and the standard deviation of norm or $W_D$, respectively. Our study identified the stock index crashes of the 2008 financial crisis and the COVID-19 pandemic across continents as EEs. Given that different sectors in an index behave differently, a sector-wise analysis was conducted during the COVID-19 pandemic for the Indian stock market. The sector-wise results show that after the occurrence of EE, we have observed strong crashes surpassing $\mu+2*\sigma$ for an extended period for the banking sector. While for the pharmaceutical sector, no significant spikes were noted. Hence, TDA also proves successful in identifying the duration of shocks after the occurrence of EEs. This also indicates that the Banking sector continued to face stress and remained volatile even after the crash. This study gives us the applicability of TDA as a powerful analytical tool to study EEs in various fields.
Date: 2024-05
New Economics Papers: this item is included in nep-rmg
References: Add references at CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2405.16052 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2405.16052
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().