EconPapers    
Economics at your fingertips  
 

Quantifying the Reliance of Black-Box Decision-Makers on Variables of Interest

Daniel Vebman

Papers from arXiv.org

Abstract: This paper introduces a framework for measuring how much black-box decision-makers rely on variables of interest. The framework adapts a permutation-based measure of variable importance from the explainable machine learning literature. With an emphasis on applicability, I present some of the framework's theoretical and computational properties, explain how reliance computations have policy implications, and work through an illustrative example. In the empirical application to interruptions by Supreme Court Justices during oral argument, I find that the effect of gender is more muted compared to the existing literature's estimate; I then use this paper's framework to compare Justices' reliance on gender and alignment to their reliance on experience, which are incomparable using regression coefficients.

Date: 2024-05
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2405.17225 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2405.17225

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2405.17225