EconPapers    
Economics at your fingertips  
 

Modeling the Feedback of AI Price Estimations on Actual Market Values

Viorel Silaghi, Zobaida Alssadi, Ben Mathew, Majed Alotaibi, Ali Alqarni and Marius Silaghi

Papers from arXiv.org

Abstract: Public availability of Artificial Intelligence generated information can change the markets forever, and its factoring into economical dynamics may take economists by surprise, out-dating models and schools of thought. Real estate hyper-inflation is not a new phenomenon but its consistent and almost monotonous persistence over 12 years, coinciding with prominence of public estimation information from Zillow, a successful Mass Real Estate Estimator (MREE), could not escape unobserved. What we model is a repetitive theoretical game between the MREE and the home owners, where each player has secret information and expertise. If the intention is to keep housing affordable and maintain old American lifestyle with broad home-ownership, new challenges are defined. Simulations show that a simple restriction of MREE-style price estimation availability to opt-in properties may help partially reduce feedback loop by acting on its likely causes, as suggested by experimental simulation models. The conjecture that the MREE pressure on real estate inflation rate is correlated with the absolute MREE estimation errors, which is logically explainable, is then validated in simulations.

Date: 2024-03
New Economics Papers: this item is included in nep-ain, nep-mac and nep-ure
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2405.18434 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2405.18434

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2405.18434