EconPapers    
Economics at your fingertips  
 

Worst-cases of distortion riskmetrics and weighted entropy with partial information

Baishuai Zuo and Chuancun Yin

Papers from arXiv.org

Abstract: In this paper, we discuss the worst-case of distortion riskmetrics for general distributions when only partial information (mean and variance) is known. This result is applicable to general class of distortion risk measures and variability measures. Furthermore, we also consider worst-case of weighted entropy for general distributions when only partial information is available. Specifically, we provide some applications for entropies, weighted entropies and risk measures. The commonly used entropies include Gini functional, cumulative residual entropy, tail-Gini functional, cumulative Tsallis past entropy, extended Gini coefficient and so on. The risk measures contain some premium principles and shortfalls based on entropy. The shortfalls include the Gini shortfall, extended Gini shortfall, shortfall of cumulative residual entropy and shortfall of cumulative residual Tsallis entropy with order $\alpha$.

Date: 2024-05
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2405.19075 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2405.19075

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2405.19075