Portfolio Optimization with Robust Covariance and Conditional Value-at-Risk Constraints
Qiqin Zhou
Papers from arXiv.org
Abstract:
The measure of portfolio risk is an important input of the Markowitz framework. In this study, we explored various methods to obtain a robust covariance estimators that are less susceptible to financial data noise. We evaluated the performance of large-cap portfolio using various forms of Ledoit Shrinkage Covariance and Robust Gerber Covariance matrix during the period of 2012 to 2022. Out-of-sample performance indicates that robust covariance estimators can outperform the market capitalization-weighted benchmark portfolio, particularly during bull markets. The Gerber covariance with Mean-Absolute-Deviation (MAD) emerged as the top performer. However, robust estimators do not manage tail risk well under extreme market conditions, for example, Covid-19 period. When we aim to control for tail risk, we should add constraint on Conditional Value-at-Risk (CVaR) to make more conservative decision on risk exposure. Additionally, we incorporated unsupervised clustering algorithm K-means to the optimization algorithm (i.e. Nested Clustering Optimization, NCO). It not only helps mitigate numerical instability of the optimization algorithm, but also contributes to lower drawdown as well.
Date: 2024-06
New Economics Papers: this item is included in nep-rmg
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2406.00610 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2406.00610
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).