Random Subspace Local Projections
Viet Hoang Dinh,
Didier Nibbering and
Benjamin Wong
Papers from arXiv.org
Abstract:
We show how random subspace methods can be adapted to estimating local projections with many controls. Random subspace methods have their roots in the machine learning literature and are implemented by averaging over regressions estimated over different combinations of subsets of these controls. We document three key results: (i) Our approach can successfully recover the impulse response functions across Monte Carlo experiments representative of different macroeconomic settings and identification schemes. (ii) Our results suggest that random subspace methods are more accurate than other dimension reduction methods if the underlying large dataset has a factor structure similar to typical macroeconomic datasets such as FRED-MD. (iii) Our approach leads to differences in the estimated impulse response functions relative to benchmark methods when applied to two widely studied empirical applications.
Date: 2024-06
New Economics Papers: this item is included in nep-big
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2406.01002 Latest version (application/pdf)
Related works:
Working Paper: Random Subspace Local Projections (2023) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2406.01002
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().