Enabling Decision-Making with the Modified Causal Forest: Policy Trees for Treatment Assignment
Hugo Bodory,
Federica Mascolo and
Michael Lechner
Papers from arXiv.org
Abstract:
Decision-making plays a pivotal role in shaping outcomes in various disciplines, such as medicine, economics, and business. This paper provides guidance to practitioners on how to implement a decision tree designed to address treatment assignment policies using an interpretable and non-parametric algorithm. Our Policy Tree is motivated on the method proposed by Zhou, Athey, and Wager (2023), distinguishing itself for the policy score calculation, incorporating constraints, and handling categorical and continuous variables. We demonstrate the usage of the Policy Tree for multiple, discrete treatments on data sets from different fields. The Policy Tree is available in Python's open-source package mcf (Modified Causal Forest).
Date: 2024-06
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2406.02241 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2406.02241
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().