EconPapers    
Economics at your fingertips  
 

Cluster GARCH

Chen Tong, Peter Hansen and Ilya Archakov

Papers from arXiv.org

Abstract: We introduce a novel multivariate GARCH model with flexible convolution-t distributions that is applicable in high-dimensional systems. The model is called Cluster GARCH because it can accommodate cluster structures in the conditional correlation matrix and in the tail dependencies. The expressions for the log-likelihood function and its derivatives are tractable, and the latter facilitate a score-drive model for the dynamic correlation structure. We apply the Cluster GARCH model to daily returns for 100 assets and find it outperforms existing models, both in-sample and out-of-sample. Moreover, the convolution-t distribution provides a better empirical performance than the conventional multivariate t-distribution.

Date: 2024-06
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2406.06860 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2406.06860

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:2406.06860