EconPapers    
Economics at your fingertips  
 

Jackknife inference with two-way clustering

James MacKinnon, Morten Nielsen and Matthew Webb

Papers from arXiv.org

Abstract: For linear regression models with cross-section or panel data, it is natural to assume that the disturbances are clustered in two dimensions. However, the finite-sample properties of two-way cluster-robust tests and confidence intervals are often poor. We discuss several ways to improve inference with two-way clustering. Two of these are existing methods for avoiding, or at least ameliorating, the problem of undefined standard errors when a cluster-robust variance matrix estimator (CRVE) is not positive definite. One is a new method that always avoids the problem. More importantly, we propose a family of new two-way CRVEs based on the cluster jackknife. Simulations for models with two-way fixed effects suggest that, in many cases, the cluster-jackknife CRVE combined with our new method yields surprisingly accurate inferences. We provide a simple software package, twowayjack for Stata, that implements our recommended variance estimator.

Date: 2024-06
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2406.08880 Latest version (application/pdf)

Related works:
Working Paper: Jackknife Inference with Two-Way Clustering (2024) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2406.08880

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-28
Handle: RePEc:arx:papers:2406.08880