Generalized FGM dependence: Geometrical representation and convex bounds on sums
H\'el\`ene Cossette,
Etienne Marceau,
Alessandro Mutti and
Patrizia Semeraro
Papers from arXiv.org
Abstract:
Building on the one-to-one relationship between generalized FGM copulas and multivariate Bernoulli distributions, we prove that the class of multivariate distributions with generalized FGM copulas is a convex polytope. Therefore, we find sharp bounds in this class for many aggregate risk measures, such as value-at-risk, expected shortfall, and entropic risk measure, by enumerating their values on the extremal points of the convex polytope. This is infeasible in high dimensions. We overcome this limitation by considering the aggregation of identically distributed risks with generalized FGM copula specified by a common parameter $p$. In this case, the analogy with the geometrical structure of the class of Bernoulli distribution allows us to provide sharp analytical bounds for convex risk measures.
Date: 2024-06, Revised 2024-10
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2406.10648 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2406.10648
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().