Strong existence and uniqueness of a calibrated local stochastic volatility model
Scander Mustapha
Papers from arXiv.org
Abstract:
We study a two-dimensional McKean-Vlasov stochastic differential equation, whose volatility coefficient depends on the conditional distribution of the second component with respect to the first component. We prove the strong existence and uniqueness of the solution, establishing the well-posedness of a two-factor local stochastic volatility (LSV) model calibrated to the market prices of European call options. In the spirit of [Jourdain and Zhou, 2020, Existence of a calibrated regime switching local volatility model.], we assume that the factor driving the volatility of the log-price takes finitely many values. Additionally, the propagation of chaos of the particle system is established, giving theoretical justification for the algorithm [Julien Guyon and Henry-Labord\`ere, 2012, Being particular about calibration.].
Date: 2024-06
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2406.14074 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2406.14074
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().