EconPapers    
Economics at your fingertips  
 

Estimating Treatment Effects under Recommender Interference: A Structured Neural Networks Approach

Ruohan Zhan, Shichao Han, Yuchen Hu and Zhenling Jiang

Papers from arXiv.org

Abstract: Recommender systems are essential for content-sharing platforms by curating personalized content. To improve recommender systems, platforms frequently rely on creator-side randomized experiments to evaluate algorithm updates. We show that commonly adopted difference-in-means estimators can lead to severely biased estimates due to recommender interference, where treated and control creators compete for exposure. This bias can result in incorrect business decisions. To address this, we propose a ``recommender choice model'' that explicitly represents the interference pathway. The approach combines a structural choice framework with neural networks to account for rich viewer-content heterogeneity. Building on this foundation, we develop a debiased estimator using the double machine learning (DML) framework to adjust for errors from nuisance component estimation. We show that the estimator is $\sqrt{n}$-consistent and asymptotically normal, and we extend the DML theory to handle correlated data, which arise in our context due to overlapped items. We validate our method with a large-scale field experiment on Weixin short-video platform, using a costly double-sided randomization design to obtain an interference-free ground truth. Our results show that the proposed estimator successfully recovers this ground truth, whereas benchmark estimators exhibit substantial bias, and in some cases, yield reversed signs.

Date: 2024-06, Revised 2025-10
New Economics Papers: this item is included in nep-big, nep-cmp and nep-exp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2406.14380 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2406.14380

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-12-25
Handle: RePEc:arx:papers:2406.14380