EconPapers    
Economics at your fingertips  
 

Identification and Estimation of Causal Effects in High-Frequency Event Studies

Alessandro Casini and Adam McCloskey

Papers from arXiv.org

Abstract: We provide precise conditions for nonparametric identification of causal effects by high-frequency event study regressions, which have been used widely in the recent macroeconomics, financial economics and political economy literatures. The high-frequency event study method regresses changes in an outcome variable on a measure of unexpected changes in a policy variable in a narrow time window around an event or a policy announcement (e.g., a 30-minute window around an FOMC announcement). We show that, contrary to popular belief, the narrow size of the window is not sufficient for identification. Rather, the population regression coefficient identifies a causal estimand when (i) the effect of the policy shock on the outcome does not depend on the other shocks (separability) and (ii) the surprise component of the news or event dominates all other shocks that are present in the event window (relative exogeneity). Technically, the latter condition requires the policy shock to have infinite variance in the event window. Under these conditions, we establish the causal meaning of the event study estimand corresponding to the regression coefficient and the consistency and asymptotic normality of the event study estimator. Notably, this standard linear regression estimator is robust to general forms of nonlinearity. We apply our results to Nakamura and Steinsson's (2018a) analysis of the real economic effects of monetary policy, providing a simple empirical procedure to analyze the extent to which the standard event study estimator adequately estimates causal effects of interest.

Date: 2024-06, Revised 2024-10
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2406.15667 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2406.15667

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:2406.15667