EconPapers    
Economics at your fingertips  
 

Calibrated Forecasting and Persuasion

Atulya Jain and Vianney Perchet

Papers from arXiv.org

Abstract: How should an expert send forecasts to maximize her utility subject to passing a calibration test? We consider a dynamic game where an expert sends probabilistic forecasts to a decision maker. The decision maker uses a calibration test based on past outcomes to verify the expert's forecasts. We characterize the optimal forecasting strategy by reducing the dynamic game to a static persuasion problem. A distribution of forecasts is implementable by a calibrated strategy if and only if it is a mean-preserving contraction of the distribution of conditionals (honest forecasts). We characterize the value of information by comparing what an informed and uninformed expert can attain. Moreover, we consider a decision maker who uses regret minimization, instead of the calibration test, to take actions. We show that the expert can achieve the same payoff against a regret minimizer as under the calibration test, and in some instances, she can achieve strictly more.

Date: 2024-06
New Economics Papers: this item is included in nep-gth, nep-mic and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2406.15680 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2406.15680

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2406.15680