Calibrated Forecasting and Persuasion
Atulya Jain and
Vianney Perchet
Papers from arXiv.org
Abstract:
How should an expert send forecasts to maximize her utility subject to passing a calibration test? We consider a dynamic game where an expert sends probabilistic forecasts to a decision maker. The decision maker uses a calibration test based on past outcomes to verify the expert's forecasts. We characterize the optimal forecasting strategy by reducing the dynamic game to a static persuasion problem. A distribution of forecasts is implementable by a calibrated strategy if and only if it is a mean-preserving contraction of the distribution of conditionals (honest forecasts). We characterize the value of information by comparing what an informed and uninformed expert can attain. Moreover, we consider a decision maker who uses regret minimization, instead of the calibration test, to take actions. We show that the expert can achieve the same payoff against a regret minimizer as under the calibration test, and in some instances, she can achieve strictly more.
Date: 2024-06
New Economics Papers: this item is included in nep-gth, nep-mic and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2406.15680 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2406.15680
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().