EconPapers    
Economics at your fingertips  
 

Factor multivariate stochastic volatility models of high dimension

Benjamin Poignard and Manabu Asai

Papers from arXiv.org

Abstract: Building upon the pertinence of the factor decomposition to break the curse of dimensionality inherent to multivariate volatility processes, we develop a factor model-based multivariate stochastic volatility (fMSV) framework that relies on two viewpoints: sparse approximate factor model and sparse factor loading matrix. We propose a two-stage estimation procedure for the fMSV model: the first stage obtains the estimators of the factor model, and the second stage estimates the MSV part using the estimated common factor variables. We derive the asymptotic properties of the estimators. Simulated experiments are performed to assess the forecasting performances of the covariance matrices. The empirical analysis based on vectors of asset returns illustrates that the forecasting performances of the fMSV models outperforms competing conditional covariance models.

Date: 2024-06
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2406.19033 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2406.19033

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2406.19033