EconPapers    
Economics at your fingertips  
 

Upper Comonotonicity and Risk Aggregation under Dependence Uncertainty

Corrado De Vecchi, Max Nendel and Jan Streicher

Papers from arXiv.org

Abstract: In this paper, we study dependence uncertainty and the resulting effects on tail risk measures, which play a fundamental role in modern risk management. We introduce the notion of a regular dependence measure, defined on multi-marginal couplings, as a generalization of well-known correlation statistics such as the Pearson correlation. The first main result states that even an arbitrarily small positive dependence between losses can result in perfectly correlated tails beyond a certain threshold and seemingly complete independence before this threshold. In a second step, we focus on the aggregation of individual risks with known marginal distributions by means of arbitrary nondecreasing left-continuous aggregation functions. In this context, we show that under an arbitrarily small positive dependence, the tail risk of the aggregate loss might coincide with the one of perfectly correlated losses. A similar result is derived for expectiles under mild conditions. In a last step, we discuss our results in the context of credit risk, analyzing the potential effects on the value at risk for weighted sums of Bernoulli distributed losses.

Date: 2024-06
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2406.19242 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2406.19242

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2406.19242