GraphCNNpred: A stock market indices prediction using a Graph based deep learning system
Yuhui Jin
Papers from arXiv.org
Abstract:
The application of deep learning techniques for predicting stock market prices is a prominent and widely researched topic in the field of data science. To effectively predict market trends, it is essential to utilize a diversified dataset. In this paper, we give a graph neural network based convolutional neural network (CNN) model, that can be applied on diverse source of data, in the attempt to extract features to predict the trends of indices of \text{S}\&\text{P} 500, NASDAQ, DJI, NYSE, and RUSSEL. The experiments show that the associated models improve the performance of prediction in all indices over the baseline algorithms by about $4\% \text{ to } 15\%$, in terms of F-measure. A trading simulation is generated from predictions and gained a Sharpe ratio of over 3.
Date: 2024-07, Revised 2024-07
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2407.03760 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2407.03760
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().