EconPapers    
Economics at your fingertips  
 

Learning control variables and instruments for causal analysis in observational data

Nicolas Apfel, Julia Hatamyar, Martin Huber and Jannis Kueck

Papers from arXiv.org

Abstract: This study introduces a data-driven, machine learning-based method to detect suitable control variables and instruments for assessing the causal effect of a treatment on an outcome in observational data, if they exist. Our approach tests the joint existence of instruments, which are associated with the treatment but not directly with the outcome (at least conditional on observables), and suitable control variables, conditional on which the treatment is exogenous, and learns the partition of instruments and control variables from the observed data. The detection of sets of instruments and control variables relies on the condition that proper instruments are conditionally independent of the outcome given the treatment and suitable control variables. We establish the consistency of our method for detecting control variables and instruments under certain regularity conditions, investigate the finite sample performance through a simulation study, and provide an empirical application to labor market data from the Job Corps study.

Date: 2024-07
New Economics Papers: this item is included in nep-cmp and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2407.04448 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2407.04448

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:2407.04448