Unified continuous-time q-learning for mean-field game and mean-field control problems
Xiaoli Wei,
Xiang Yu and
Fengyi Yuan
Papers from arXiv.org
Abstract:
This paper studies the continuous-time q-learning in mean-field jump-diffusion models when the population distribution is not directly observable. We propose the integrated q-function in decoupled form (decoupled Iq-function) from the representative agent's perspective and establish its martingale characterization, which provides a unified policy evaluation rule for both mean-field game (MFG) and mean-field control (MFC) problems. Moreover, we consider the learning procedure where the representative agent updates the population distribution based on his own state values. Depending on the task to solve the MFG or MFC problem, we can employ the decoupled Iq-function differently to characterize the mean-field equilibrium policy or the mean-field optimal policy respectively. Based on these theoretical findings, we devise a unified q-learning algorithm for both MFG and MFC problems by utilizing test policies and the averaged martingale orthogonality condition. For several financial applications in the jump-diffusion setting, we obtain the exact parameterization of the decoupled Iq-functions and the value functions, and illustrate our q-learning algorithm with satisfactory performance.
Date: 2024-07, Revised 2025-03
New Economics Papers: this item is included in nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2407.04521 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2407.04521
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).