An Introduction to Causal Discovery
Martin Huber
Papers from arXiv.org
Abstract:
In social sciences and economics, causal inference traditionally focuses on assessing the impact of predefined treatments (or interventions) on predefined outcomes, such as the effect of education programs on earnings. Causal discovery, in contrast, aims to uncover causal relationships among multiple variables in a data-driven manner, by investigating statistical associations rather than relying on predefined causal structures. This approach, more common in computer science, seeks to understand causality in an entire system of variables, which can be visualized by causal graphs. This survey provides an introduction to key concepts, algorithms, and applications of causal discovery from the perspectives of economics and social sciences. It covers fundamental concepts like d-separation, causal faithfulness, and Markov equivalence, sketches various algorithms for causal discovery, and discusses the back-door and front-door criteria for identifying causal effects. The survey concludes with more specific examples of causal discovery, e.g. for learning all variables that directly affect an outcome of interest and/or testing identification of causal effects in observational data.
Date: 2024-07
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2407.08602 Latest version (application/pdf)
Related works:
Journal Article: An introduction to causal discovery (2024) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2407.08602
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().