EconPapers    
Economics at your fingertips  
 

Modelling shock propagation and resilience in financial temporal networks

Fabrizio Lillo and Giorgio Rizzini

Papers from arXiv.org

Abstract: Modelling how a shock propagates in a temporal network and how the system relaxes back to equilibrium is challenging but important in many applications, such as financial systemic risk. Most studies so far have focused on shocks hitting a link of the network, while often it is the node and its propensity to be connected that are affected by a shock. Using as starting point the configuration model, a specific Exponential Random Graph model, we propose a vector autoregressive (VAR) framework to analytically compute the Impulse Response Function (IRF) of a network metric conditional to a shock on a node. Unlike the standard VAR, the model is a nonlinear function of the shock size and the IRF depends on the state of the network at the shock time. We propose a novel econometric estimation method that combines the Maximum Likelihood Estimation and Kalman filter to estimate the dynamics of the latent parameters and compute the IRF, and we apply the proposed methodology to the dynamical network describing the electronic Market of Interbank Deposit (e-MID).

Date: 2024-07
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-net
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2407.09340 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2407.09340

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2407.09340