EconPapers    
Economics at your fingertips  
 

Deep Reinforcement Learning Strategies in Finance: Insights into Asset Holding, Trading Behavior, and Purchase Diversity

Alireza Mohammadshafie, Akram Mirzaeinia, Haseebullah Jumakhan and Amir Mirzaeinia

Papers from arXiv.org

Abstract: Recent deep reinforcement learning (DRL) methods in finance show promising outcomes. However, there is limited research examining the behavior of these DRL algorithms. This paper aims to investigate their tendencies towards holding or trading financial assets as well as purchase diversity. By analyzing their trading behaviors, we provide insights into the decision-making processes of DRL models in finance applications. Our findings reveal that each DRL algorithm exhibits unique trading patterns and strategies, with A2C emerging as the top performer in terms of cumulative rewards. While PPO and SAC engage in significant trades with a limited number of stocks, DDPG and TD3 adopt a more balanced approach. Furthermore, SAC and PPO tend to hold positions for shorter durations, whereas DDPG, A2C, and TD3 display a propensity to remain stationary for extended periods.

Date: 2024-06
New Economics Papers: this item is included in nep-big and nep-cmp
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2407.09557 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2407.09557

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2407.09557