Low Volatility Stock Portfolio Through High Dimensional Bayesian Cointegration
Parley R Yang and
Alexander Y Shestopaloff
Papers from arXiv.org
Abstract:
We employ a Bayesian modelling technique for high dimensional cointegration estimation to construct low volatility portfolios from a large number of stocks. The proposed Bayesian framework effectively identifies sparse and important cointegration relationships amongst large baskets of stocks across various asset spaces, resulting in portfolios with reduced volatility. Such cointegration relationships persist well over the out-of-sample testing time, providing practical benefits in portfolio construction and optimization. Further studies on drawdown and volatility minimization also highlight the benefits of including cointegrated portfolios as risk management instruments.
Date: 2024-07
New Economics Papers: this item is included in nep-ets and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2407.10175 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2407.10175
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().