EconPapers    
Economics at your fingertips  
 

Predicting the Distribution of Treatment Effects: A Covariate-Adjustment Approach

Bruno Fava

Papers from arXiv.org

Abstract: Important questions for impact evaluation require knowledge not only of average effects, but of the distribution of treatment effects. What proportion of people are harmed? Does a policy help many by a little? Or a few by a lot? The inability to observe individual counterfactuals makes these empirical questions challenging. I propose an approach to inference on points of the distribution of treatment effects by incorporating predicted counterfactuals through covariate adjustment. I show that finite-sample inference is valid under weak assumptions, for example, when data come from a Randomized Controlled Trial (RCT), and that large-sample inference is asymptotically exact under suitable conditions. Finally, I revisit five RCTs in microcredit where average effects are not statistically significant and find evidence of both positive and negative treatment effects in household income. On average across studies, at least 13.6% of households benefited, and 12.5% were negatively affected.

Date: 2024-07, Revised 2024-10
New Economics Papers: this item is included in nep-ecm and nep-exp
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2407.14635 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2407.14635

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2407.14635