Reinforcement Learning Pair Trading: A Dynamic Scaling approach
Hongshen Yang and
Avinash Malik
Papers from arXiv.org
Abstract:
Cryptocurrency is a cryptography-based digital asset with extremely volatile prices. Around USD 70 billion worth of cryptocurrency is traded daily on exchanges. Trading cryptocurrency is difficult due to the inherent volatility of the crypto market. This study investigates whether Reinforcement Learning (RL) can enhance decision-making in cryptocurrency algorithmic trading compared to traditional methods. In order to address this question, we combined reinforcement learning with a statistical arbitrage trading technique, pair trading, which exploits the price difference between statistically correlated assets. We constructed RL environments and trained RL agents to determine when and how to trade pairs of cryptocurrencies. We developed new reward shaping and observation/action spaces for reinforcement learning. We performed experiments with the developed reinforcement learner on pairs of BTC-GBP and BTC-EUR data separated by 1 min intervals (n=263,520). The traditional non-RL pair trading technique achieved an annualized profit of 8.33%, while the proposed RL-based pair trading technique achieved annualized profits from 9.94% to 31.53%, depending upon the RL learner. Our results show that RL can significantly outperform manual and traditional pair trading techniques when applied to volatile markets such as~cryptocurrencies.
Date: 2024-07, Revised 2024-12
New Economics Papers: this item is included in nep-big, nep-cmp, nep-mst and nep-pay
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2407.16103 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2407.16103
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().