EconPapers    
Economics at your fingertips  
 

On Deep Learning for computing the Dynamic Initial Margin and Margin Value Adjustment

Joel P. Villarino and \'Alvaro Leitao

Papers from arXiv.org

Abstract: The present work addresses the challenge of training neural networks for Dynamic Initial Margin (DIM) computation in counterparty credit risk, a task traditionally burdened by the high costs associated with generating training datasets through nested Monte Carlo (MC) simulations. By condensing the initial market state variables into an input vector, determined through an interest rate model and a parsimonious parameterization of the current interest rate term structure, we construct a training dataset where labels are noisy but unbiased DIM samples derived from single MC paths. A multi-output neural network structure is employed to handle DIM as a time-dependent function, facilitating training across a mesh of monitoring times. The methodology offers significant advantages: it reduces the dataset generation cost to a single MC execution and parameterizes the neural network by initial market state variables, obviating the need for repeated training. Experimental results demonstrate the approach's convergence properties and robustness across different interest rate models (Vasicek and Hull-White) and portfolio complexities, validating its general applicability and efficiency in more realistic scenarios.

Date: 2024-07
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2407.16435 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2407.16435

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2407.16435