The Hybrid Forecast of S&P 500 Volatility ensembled from VIX, GARCH and LSTM models
Natalia Roszyk and
Robert Ślepaczuk
Papers from arXiv.org
Abstract:
Predicting the S&P 500 index volatility is crucial for investors and financial analysts as it helps assess market risk and make informed investment decisions. Volatility represents the level of uncertainty or risk related to the size of changes in a security's value, making it an essential indicator for financial planning. This study explores four methods to improve the accuracy of volatility forecasts for the S&P 500: the established GARCH model, known for capturing historical volatility patterns; an LSTM network that utilizes past volatility and log returns; a hybrid LSTM-GARCH model that combines the strengths of both approaches; and an advanced version of the hybrid model that also factors in the VIX index to gauge market sentiment. This analysis is based on a daily dataset that includes S&P 500 and VIX index data, covering the period from January 3, 2000, to December 21, 2023. Through rigorous testing and comparison, we found that machine learning approaches, particularly the hybrid LSTM models, significantly outperform the traditional GARCH model. Including the VIX index in the hybrid model further enhances its forecasting ability by incorporating real-time market sentiment. The results of this study offer valuable insights for achieving more accurate volatility predictions, enabling better risk management and strategic investment decisions in the volatile environment of the S&P 500.
Date: 2024-07
New Economics Papers: this item is included in nep-cmp, nep-fmk, nep-for and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2407.16780 Latest version (application/pdf)
Related works:
Working Paper: The Hybrid Forecast of S&P 500 Volatility ensembled from VIX, GARCH and LSTM models (2024) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2407.16780
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().