Fine-Tuning Large Language Models for Stock Return Prediction Using Newsflow
Tian Guo and
Emmanuel Hauptmann
Papers from arXiv.org
Abstract:
Large language models (LLMs) and their fine-tuning techniques have demonstrated superior performance in various language understanding and generation tasks. This paper explores fine-tuning LLMs for stock return forecasting with financial newsflow. In quantitative investing, return forecasting is fundamental for subsequent tasks like stock picking, portfolio optimization, etc. We formulate the model to include text representation and forecasting modules. We propose to compare the encoder-only and decoder-only LLMs, considering they generate text representations in distinct ways. The impact of these different representations on forecasting performance remains an open question. Meanwhile, we compare two simple methods of integrating LLMs' token-level representations into the forecasting module. The experiments on real news and investment universes reveal that: (1) aggregated representations from LLMs' token-level embeddings generally produce return predictions that enhance the performance of long-only and long-short portfolios; (2) in the relatively large investment universe, the decoder LLMs-based prediction model leads to stronger portfolios, whereas in the small universes, there are no consistent winners. Among the three LLMs studied (DeBERTa, Mistral, Llama), Mistral performs more robustly across different universes; (3) return predictions derived from LLMs' text representations are a strong signal for portfolio construction, outperforming conventional sentiment scores.
Date: 2024-07, Revised 2024-08
New Economics Papers: this item is included in nep-ain, nep-big, nep-cmp and nep-fmk
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2407.18103 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2407.18103
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().