EconPapers    
Economics at your fingertips  
 

Multilevel Monte Carlo in Sample Average Approximation: Convergence, Complexity and Application

Devang Sinha and Siddhartha P. Chakrabarty

Papers from arXiv.org

Abstract: In this paper, we examine the Sample Average Approximation (SAA) procedure within a framework where the Monte Carlo estimator of the expectation is biased. We also introduce Multilevel Monte Carlo (MLMC) in the SAA setup to enhance the computational efficiency of solving optimization problems. In this context, we conduct a thorough analysis, exploiting Cram\'er's large deviation theory, to establish uniform convergence, quantify the convergence rate, and determine the sample complexity for both standard Monte Carlo and MLMC paradigms. Additionally, we perform a root-mean-squared error analysis utilizing tools from empirical process theory to derive sample complexity without relying on the finite moment condition typically required for uniform convergence results. Finally, we validate our findings and demonstrate the advantages of the MLMC estimator through numerical examples, estimating Conditional Value-at-Risk (CVaR) in the Geometric Brownian Motion and nested expectation framework.

Date: 2024-07
New Economics Papers: this item is included in nep-cmp and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2407.18504 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2407.18504

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2407.18504