Methodological Foundations of Modern Causal Inference in Social Science Research
Guanghui Pan
Papers from arXiv.org
Abstract:
This paper serves as a literature review of methodology concerning the (modern) causal inference methods to address the causal estimand with observational/survey data that have been or will be used in social science research. Mainly, this paper is divided into two parts: inference from statistical estimand for the causal estimand, in which we reviewed the assumptions for causal identification and the methodological strategies addressing the problems if some of the assumptions are violated. We also discuss the asymptotical analysis concerning the measure from the observational data to the theoretical measure and replicate the deduction of the efficient/doubly robust average treatment effect estimator, which is commonly used in current social science analysis.
Date: 2024-07
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2408.00032 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2408.00032
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().