Efficient simulation of the SABR model
Jaehyuk Choi,
Lilian Hu and
Yue Kuen Kwok
Papers from arXiv.org
Abstract:
We propose an efficient and reliable simulation scheme for the stochastic-alpha-beta-rho (SABR) model. The two challenges of the SABR simulation lie in sampling (i) the integrated variance conditional on terminal volatility and (ii) the terminal price conditional on terminal volatility and integrated variance. For the first sampling procedure, we analytically derive the first four moments of the conditional average variance, and sample it from the moment-matched shifted lognormal approximation. For the second sampling procedure, we approximate the conditional terminal price as a constant-elasticity-of-variance (CEV) distribution. Our CEV approximation preserves the martingale condition and precludes arbitrage, which is a key advantage over Islah's approximation used in most SABR simulation schemes in the literature. Then, we adopt the exact sampling method of the CEV distribution based on the shifted-Poisson-mixture Gamma random variable. Our enhanced procedures avoid the tedious Laplace inversion algorithm for sampling integrated variance and non-efficient inverse transform sampling of the forward price in some of the earlier simulation schemes. Numerical results demonstrate our simulation scheme to be highly efficient, accurate, and reliable.
Date: 2024-08
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2408.01898 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2408.01898
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().