Change-Point Detection in Time Series Using Mixed Integer Programming
Artem Prokhorov,
Peter Radchenko,
Alexander Semenov and
Anton Skrobotov
Papers from arXiv.org
Abstract:
We use cutting-edge mixed integer optimization (MIO) methods to develop a framework for detection and estimation of structural breaks in time series regression models. The framework is constructed based on the least squares problem subject to a penalty on the number of breakpoints. We restate the $l_0$-penalized regression problem as a quadratic programming problem with integer- and real-valued arguments and show that MIO is capable of finding provably optimal solutions using a well-known optimization solver. Compared to the popular $l_1$-penalized regression (LASSO) and other classical methods, the MIO framework permits simultaneous estimation of the number and location of structural breaks as well as regression coefficients, while accommodating the option of specifying a given or minimal number of breaks. We derive the asymptotic properties of the estimator and demonstrate its effectiveness through extensive numerical experiments, confirming a more accurate estimation of multiple breaks as compared to popular non-MIO alternatives. Two empirical examples demonstrate usefulness of the framework in applications from business and economic statistics.
Date: 2024-08
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2408.05665 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2408.05665
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().