EconPapers    
Economics at your fingertips  
 

On Accelerating Large-Scale Robust Portfolio Optimization

Chung-Han Hsieh and Jie-Ling Lu

Papers from arXiv.org

Abstract: Solving large-scale robust portfolio optimization problems is challenging due to the high computational demands associated with an increasing number of assets, the amount of data considered, and market uncertainty. To address this issue, we propose an extended supporting hyperplane approximation approach for efficiently solving a class of distributionally robust portfolio problems for a general class of additively separable utility functions and polyhedral ambiguity distribution set, applied to a large-scale set of assets. Our technique is validated using a large-scale portfolio of the S&P 500 index constituents, demonstrating robust out-of-sample trading performance. More importantly, our empirical studies show that this approach significantly reduces computational time compared to traditional concave Expected Log-Growth (ELG) optimization, with running times decreasing from several thousand seconds to just a few. This method provides a scalable and practical solution to large-scale robust portfolio optimization, addressing both theoretical and practical challenges.

Date: 2024-08
New Economics Papers: this item is included in nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2408.07879 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2408.07879

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2408.07879