Revisiting the Many Instruments Problem using Random Matrix Theory
Helmut Farbmacher,
Rebecca Groh,
Michael M\"uhlegger and
Gabriel Vollert
Papers from arXiv.org
Abstract:
We use recent results from the theory of random matrices to improve instrumental variables estimation with many instruments. In settings where the first-stage parameters are dense, we show that Ridge lowers the implicit price of a bias adjustment. This comes along with improved (finite-sample) properties in the second stage regression. Our theoretical results nest existing results on bias approximation and bias adjustment. Moreover, it extends them to settings with more instruments than observations.
Date: 2024-08
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2408.08580 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2408.08580
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().