Externally Valid Selection of Experimental Sites via the k-Median Problem
Jos\'e Luis Montiel Olea,
Brenda Prallon,
Chen Qiu,
Jörg Stoye and
Yiwei Sun
Papers from arXiv.org
Abstract:
We present a decision-theoretic justification for viewing the question of how to best choose where to experiment in order to optimize external validity as a k-median (clustering) problem, a popular problem in computer science and operations research. We present conditions under which minimizing the worst-case, welfare-based regret among all nonrandom schemes that select k sites to experiment is approximately equal - and sometimes exactly equal - to finding the k most central vectors of baseline site-level covariates. The k-median problem can be formulated as a linear integer program. Two empirical applications illustrate the theoretical and computational benefits of the suggested procedure.
Date: 2024-08
New Economics Papers: this item is included in nep-exp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2408.09187 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2408.09187
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().