EconPapers    
Economics at your fingertips  
 

Learning to Optimally Stop Diffusion Processes, with Financial Applications

Min Dai, Yu Sun, Zuo Quan Xu and Xun Yu Zhou

Papers from arXiv.org

Abstract: We study optimal stopping for diffusion processes with unknown model primitives within the continuous-time reinforcement learning (RL) framework developed by Wang et al. (2020), and present applications to option pricing and portfolio choice. By penalizing the corresponding variational inequality formulation, we transform the stopping problem into a stochastic optimal control problem with two actions. We then randomize controls into Bernoulli distributions and add an entropy regularizer to encourage exploration. We derive a semi-analytical optimal Bernoulli distribution, based on which we devise RL algorithms using the martingale approach established in Jia and Zhou (2022a). We establish a policy improvement theorem and prove the fast convergence of the resulting policy iterations. We demonstrate the effectiveness of the algorithms in pricing finite-horizon American put options, solving Merton's problem with transaction costs, and scaling to high-dimensional optimal stopping problems. In particular, we show that both the offline and online algorithms achieve high accuracy in learning the value functions and characterizing the associated free boundaries.

Date: 2024-08, Revised 2025-08
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2408.09242 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2408.09242

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-08-14
Handle: RePEc:arx:papers:2408.09242